1    222nm Published Research

1.1 Comparison of stratum corneum thickness in children and adults
Fairley J.A, Rasmussen J.E. (1983). Comparison of stratum corneum thickness in children and adults.
Journal of the American Academy of Dermatology, 8(5): 652–654.

https://doi.org/10.1016/s0190-9622(83)70074-5

 

1.2 Higher effectiveness of photoinactivation of bacterial spores, UV resistant
vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength
subtilis Spores in Aqueous Suspensions at 172, 222 and 254 nm
Clauss, Marcus. (2007). Higher effectiveness of photoinactivation of bacterial spores, UV resistant
vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength. Clean Soil Air Water,
34: 525-532.

https://doi.org/10.1002/aheh.200600650


1.3 Comparison of the Disinfection Effects of Vacuum UV (VUV) and UV Light on
Bacillus subtilis Spores in Aqueous Suspensions at 172, 222 and 254 nm
Wang, D., Oppenländer, T., El-Din, M.G. and Bolton, J.R. (2010). Comparison of the Disinfection Effects of
Vacuum UV (VUV) and UV Light on Bacillus subtilis Spores in Aqueous Suspensions at 172, 222 and 254
nm. Photochemistry and Photobiology, 86: 176-181.

https://doi.org/10.1111/j.1751-1097.2009.00640.x


1.4 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site
Infections. I: In Vitro Studies*
Buonanno M., Randers-Pehrson G., Bigelow A.W., Trivedi S., Lowy F.D., et al. (2013). 207-nm UV Light - A
Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies. PLOS ONE,
8(10).

https://doi.org/10.1371/journal.pone.0076968


1.5 Action spectra for validation of pathogen disinfection in medium-pressure
ultraviolet (UV) systems
Sara E. Beck, Harold B. Wright, Thomas M. Hargy, Thomas C. Larason, Karl G. Linden. (2015). Action
spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. Water
Research, 70: 27-37.

https://doi.org/10.1016/j.watres.2014.11.028


1.6 207-nm UV Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site
Infections. II: In-Vivo Safety Studies*
Buonanno M., Stanislauskas M., Ponnaiya B., Bigelow A.W., Randers-Pehrson G., et al. (2016). 207-nm UV
Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies.
PLOS ONE, 11(6): e0138418.

https://doi.org/10.1371/journal.pone.0138418

* Study is referenced because it includes a discussion of biological safety of far UVC light on mammalian cells and tissues.Inclusion of the study is not intended to
make any medical claim regarding the cure, mitigation, treatment, or prevention of disease.


1.7 Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Buonanno, M., Ponnaiya, B., Welch, D., Stanislauskas, M., Randers-Pehrson, G., Smilenov, L., Lowy, F. D.,
Owens, D. M., & Brenner, D. J. (2017). Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV
Light. Radiation Research, 187(4): 483–491.

https://doi.org/10.1667/RR0010CC.1


1.8 Disinfection and healing effects of 222-nm UVC light on methicillin-resistant
Staphylococcus aureus infection in mouse wounds*
Narita, K., Asano, K., Morimoto, Y., Igarashi, T., Hamblin, M. R., Dai, T., & Nakane, A. (2018). Disinfection
and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse
wounds. Journal of photochemistry and photobiology B: Biology, 178: 10–18.

https://doi.org/10.1016/j.jphotobiol.2017.10.030

* Study is referenced because it includes a discussion of biological safety of far UVC light on mammalian cells and tissues.Inclusion of the study is not intended to
make any medical claim regarding the cure, mitigation, treatment, or prevention of disease.

 

1.9 Far-UVC light prevents MRSA infection of superficial wounds in vivo*
Ponnaiya B., Buonanno M., Welch D., Shuryak I., Randers-Pehrson G., et al. (2018). Far-UVC light
prevents MRSA infection of superficial wounds in vivo. PLOS ONE, 13(2): e0192053.

https://doi.org/10.1371/journal.pone.0192053

* Study is referenced because it includes a discussion of biological safety of far UVC light on mammalian cells and tissues.Inclusion of the study is not intended to
make any medical claim regarding the cure, mitigation, treatment, or prevention ofdisease.


1.10 Far-UVC light: A new tool to control the spread of airborne-mediated microbial
diseases**
Welch, D., Buonanno, M., Grilj, V., et al. (2018). Far-UVC light: A new tool to control the spread of airbornemediated microbial diseases. Sci Rep, 8: e2752.

https://doi.org/10.1038/s41598-018-21058-w

** Study is referenced because it includes a discussion of the characteristics of far-UVC light and its ability to inactivate aerosolized viruses. Inclusion of the study is
not intended to make any medical claim regarding the cure, mitigation, treatment, or prevention of disease.


1.11 Chronic irradiation with 222-nm UVC light induces neither DNA damage nor
epidermal lesions in mouse skin, even at high doses
Narita, K., Asano, K., Morimoto, Y., Igarashi, T., Nakane, A. (2018). Chronic irradiation with 222-nm UVC
light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLOS ONE,
13(7): e0201259.

https://doi.org/10.1371/journal.pone.0201259


1.12 Effect of far ultraviolet light emitted from an optical diffuser on methicillin- resistant
Staphylococcus aureus in vitro
Welch, D., Buonanno, M., Shuryak, I., Randers-Pehrson, G., Spotnitz, H.M., et al. (2018). Effect of far
ultraviolet light emitted from an optical diffuser on methicillin-resistant Staphylococcus aureus in vitro. PLOS
ONE, 13(8): e0202275.

https://doi.org/10.1371/journal.pone.0202275


1.13 Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light
in Sprague–Dawley rats
Sachiko Kaidzu, Kazunobu Sugihara, Masahiro Sasaki, Aiko Nishiaki, Tatsushi Igarashi & Masaki Tanito
(2019). Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague–
Dawley rats. Free Radical Research, 53(6): 611-617.

https://doi.org/10.1080/10715762.2019.1603378


1.14 DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV
Radiation
Willie Taylor, Emily Camilleri, D. Levi Craft, George Korza, Maria Rocha Granados, Jaliyah Peterson,
Renata Szczpaniak, Sandra K. Weller, Ralf Moeller, Thierry Douki, Wendy W. K. Mok, Peter Setlow. (2020).
DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation. Applied and
Environmental Microbiology, 86(8): e03039-19.

https://doi.org/10.1128/AEM.03039-19


1.15 Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice
susceptible to ultraviolet radiation
Yamano, N., Kunisada, M., Kaidzu, S., Sugihara, K., Nishiaki-Sawada, A., Ohashi, H., Yoshioka, A.,
Igarashi, T., Ohira, A., Tanito, M. and Nishigori, C. (2020). Long-term effects of 222 nm ultraviolet radiation
C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem Photobiol, 96: 853-862.

https://doi.org/10.1111/php.13269


1.16 222-nm UVC inactivates a wide spectrum of microbial pathogens
K. Narita, K. Asano, K. Naito, H. Ohashi, M. Sasaki, Y. Morimoto, T. Igarashi, A. Nakane. (2020). 222-nm
UVC inactivates a wide spectrum of microbial pathogens. Journal of Hospital Infection, 105(3): 459-467.

https://doi.org/10.1016/j.jhin.2020.03.030


1.17 Far-UVC light (222 nm) efficiently and safely inactivates airborne human
coronaviruses
Buonanno, M., Welch, D., Shuryak, I., et al. (2020). Far-UVC light (222 nm) efficiently and safely inactivates
airborne human coronaviruses. Sci Rep, 10: e10285.

https://doi.org/10.1038/s41598-020-67211-2


1.18 Predicting airborne coronavirus inactivation by far-UVC in populated rooms using
a high-fidelity coupled radiation-CFD model
Buchan, A.G., Yang, L. & Atkinson, K.D. (2020). Predicting airborne coronavirus inactivation by far-UVC in
populated rooms using a high-fidelity coupled radiation-CFD model. Sci Rep, 10: e19659.

https://doi.org/10.1038/s41598-020-76597-y


1.19 Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface
contamination
Hiroki Kitagawa, Toshihito Nomura, Tanuza Nazmul, Keitaro Omori, Norifumi Shigemoto, Takemasa
Sakaguchi, Hiroki Ohge. (2020). Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2
surface contamination. American Journal of Infection Controls, 49(3): 299-301.

https://doi.org/10.1016/j.ajic.2020.08.022


1.20 Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C
irradiation in healthy humans
Fukui, T., Niikura, T., Oda, T., Kumabe, Y., Ohashi, H., et al. (2020). Exploratory clinical trial on the safety
and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. PLOS ONE, 15(8):
e0235948.

https://doi.org/10.1371/journal.pone.0235948


1.21 Effect of intermittent irradiation and fluence-response of 222nm ultraviolet light on
SARS-CoV-2 contamination
Kitagawa, H., Nomura, T., Nazmul, T., Kawano, R., Omori, K., Shigemoto, N., Sakaguchi, T., & Ohge, H.
(2021). Effect of intermittent irradiation and fluence-response of 222 nm ultraviolet light on SARS-CoV-2
contamination. Photodiagnosis and Photodynamic Therapy, 33: e102184.

https://doi.org/10.1016/j.pdpdt.2021.102184


1.22 Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical
Filtering***
Buonanno, M., Welch, D. and Brenner, D.J. (2021). Exposure of Human Skin Models to KrCl Excimer
Lamps: The Impact of Optical Filtering. Photochem Photobiol, 97: 517-523.

https://doi.org/10.1111/php.13383

***Study is referenced because it explores KrCl lamp health hazards by comparing filtered and unfiltered KrCl lamps usingeffective spectral irradiance calculations
and experimental skin exposures; the study does not address any intended impact on the structure or function of the body.


1.23 Ozone Generation by Ultraviolet Lamps
Claus, H. (2021). Ozone Generation by Ultraviolet Lamps. Photochem Photobiol, 97: 471-476.

https://doi.org/10.1111/php.13391


1.24 A Need to Revise Human Exposure Limits for Ultraviolet UV-C Radiation
Sliney, D.H. and Stuck, B.E. (2021). A Need to Revise Human Exposure Limits for Ultraviolet UV-C
Radiation. Photochem Photobiol, 97: 485-492.

https://doi.org/10.1111/php.13402


1.25 Re-Evaluation of Rat Corneal Damage by Short-Wavelength UV Revealed Extremely
Less Hazardous Property of Far-UV-C
Kaidzu, S., Sugihara, K., Sasaki, M., Nishiaki, A., Ohashi, H., Igarashi, T. and Tanito, M. (2021). ReEvaluation of Rat Corneal Damage by Short-Wavelength UV Revealed Extremely Less Hazardous Property
of Far-UV-C. Photochem Photobiol, 97(3): 505-516.

https://doi.org/10.1111/php.13419


1.26 Extreme Exposure to Filtered Far-UVC: A Case Study
Eadie, E., Barnard, I.M.R., Ibbotson, S.H. and Wood, K. (2021). Extreme Exposure to Filtered Far-UVC: A
Case Study. Photochem Photobiol, 97: 527-531.

https://doi.org/10.1111/php.13385


1.27 Pilot study on the decontamination efficacy of an installed 222-nm ultraviolet disinfection
device (Care222®), with a motion sensor, in a shared bathroom
Hiroki Kitagawa, Yuki Kaiki, Kayoko Tadera, Toshihito Nomura, Keitaro Omori, Norifumi Shigemoto, Shinya
Takahashi, Hiroki Ohge. (2021). Pilot study on the decontamination efficacy of an installed 222-nm
ultravioletdisinfection device (Care222™), with a motion sensor, in a shared bathroom, Photodiagnosis and
Photodynamic Therapy, 34: 102334.

https://doi.org/10.1016/j.pdpdt.2021.102334


1.28 Disinfection capabilities of a 222 nm wavelength ultraviolet lighting device: a pilot study
Jun Chance Goh, Dale Fisher, Eileen Chor Hoong Hing, Lee Hanjing, Yap Yan Lin, Jane Lim, Ong Wei
Chen, and Lim Thiam Chye. (2021). Disinfection capabilities of a 222 nm wavelength ultraviolet lighting
device: a pilotstudy. Journal of Wound Care, 30(2): 96-104.

https://doi.org/10.12968/jowc.2021.30.2.96


1.29 Far-UVC efficiently inactivates an airborne pathogen in a room-sized chamber
Ewan Eadie, Waseem Hiwar, Louise Fletcher, Emma Tidswell, Paul O’Mahoney, Manuela Buonanno,
DavidWelch, Catherine S. Adamson, David J. Brenner, Catherine Noakes, Kenneth Wood. (2021). FarUVC efficiently inactivates an airborne pathogen in a room-sized chamber. scientific reports, In Review.

https://doi.org/10.21203/rs.3.rs-908156/v1


1.30 Anti-microbial effect of filtered 222nm excimer lamps in a hospital waiting area
Jacob Thyrsted, Søren Helbo Skaarup, Andreas Fløe Hvass, Sara Moeslund Joensen, Stine Y. Nielsen,
Elisabeth Bendstrup, Pernille Hauschildt, Christian K. Holm. (2021). Anti-microbial effect of filtered222nm
excimer lamps in a hospital waiting area. medRxi, Preprint.

https://doi.org/10.1101/2021.09.03.21263096


1.31 UV Inactivation of SARS-CoV-2 across the UVC spectrum: KrCL excimer, mercury-vapor, and
LED sources
Ben Ma, Patricia M. Gundy, Charles P. Gerba, Mark D. Sobsey and Karl G. Linden. (2021). UV Inactivationof
SARS-CoV-2 across the UVC spectrum: KrCl excimer, mercury-vapor, and LED sources. Applied and
Environmental Microbiology, 87(22): e01532-21.

https://doi.org/10.1128/AEM.01532-21


1.32 Computer Modeling Indicates Dramatically Less DNA Damage from Far-UVC Krypton Chloride
Lamps (222nm) than from Sunlight Exposure
Eadie E, O'Mahoney P, Finlayson L, Barnard IRM, Ibbotson SH, Wood K. (2021). Computer Modeling
Indicates Dramatically Less DNA Damage from Far-UVC Krypton Chloride Lamps (222 nm) than from Sunlight
Exposure. Photochem Photobiol. 97(5): 1150-1154.

https://doi.org/10.1111/php.13477


1.33 Minimal, Superficial DNA Damage in Human Skin from Filtered Far-Ultraviolet C
R.P. Hickerson, M.J. Conneely, S.K. Hirata Tsutsumi, K. Wood, D.N. Jackson, S.H. Ibbotson, E. Eadie (2021).
Minimal, Superficial DNA Damage in Human Skin from Filtered Far-Ultraviolet C. British Journal of
Dermatology, 184(6): 1197-1199.

https://doi.org/10.1111/bjd.19816


1.34 UV and violet light can Neutralize SARS-CoV-2 Infectivity
Mara Biasin, Sergio Strizzi, Andrea Bianco, Alberto Macchi, Olga Utyro, Giovanni Pareschi, Alessia Loffreda,
Adalberto Cavalleri, Manuela Lualdi, Daria Trabattoni, Carlo Tacchetti, Davide Mazza, Mario Clerici. (2022).
UV and violet light can Neutralize SARS-CoV-2 Infectivity. Journal of Photochemistry and Photobiology, Vol.
10: e100107.

https://doi.org/10.1016/j.jpap.2021.100107


1.35 Effect of ultraviolet C emitted from KrCl excimer lamp with or without bandpass filter to mouse
epidermis
Narita K, Asano K, Yamane K, Ohashi H, Igarashi T, et al. (2022). Effect of ultraviolet C emitted from KrCl
excimer lamp with or without bandpass filter to mouse epidermis. PLOS ONE 17(5):
e0267957.

https://doi.org/10.1371/journal.pone.026795